Эффект слепого бармена и виртуальные профили детей

barman

17 сентября в 19:00 (по МСК)
Хотите узнать, как научить поиск на сайте продавать?
CEO REES46 Михаил Кечинов расскажет о том, как сократить путь клиента до покупки и увеличить выручку с помощью умного поиска.
webinar

Речь пойдет о том, как работают механизмы персональных товарных рекомендаций в магазинах с детскими товарами.

Интернет-магазин без персонализации — это как слепой бармен. Он будет советовать один и тот же бурбон и крутому ковбою, и бородатому фермеру, и бедному студенту, и даме с собачкой. Иногда такие советы будут работать. Но в том-то и дело, что только иногда.

Инструмент повыше рангом — персональные рекомендации. Когда ковбой получает виски, дамочка молочный коктейль, а студент лагер и чипсы. Собственно, еще года три назад исследования говорили, что больше 50% пользователей повторно посещают магазины с персонализированными рекомендациями. Оно и понятно.

Но и в персональных рекомендациях есть свои подводные камни.

Дело в том, что для качественных рекомендаций система персонализации ведет по каждому посетителю своеобразное «досье». Виртуальный профиль пользователя. В этот профиль записывается история ваших действий, просмотров, покупок, измеряется время, в течение которого вы смотрели вот этот вот товар и так далее. Иными словами, виртуальный профиль — это все ваши привычки, вкусы и повадки. Конечно, система не знает ваших персональных данных, для нее вы — «пользователь № 312a34cf557i» с таким-то набором характеристик. Но стоит вам снова зайти на сайт — «досье» на вас поднимается, и система рекомендует то, что вы хотели бы купить.

Окей, система может понять, что я люблю и что мне порекомендовать. А что, если я выбираю товары не только себе, но и своему ребенку?

Все становится сложнее и системе персонализации приходится изворачиваться. Иными словами — становится нужен алгоритм персональных рекомендаций для родителей с детьми.

Мы в REES46 всегда делали упор в разработке именно на отраслевых алгоритмов, поэтому немного расскажем, как работает механизм «детских» рекомендаций изнутри.

В чем отличие детей от взрослых

Дети сильно отличаются от взрослых именно как потребители. В чем именно отличия?

  1. У детей только одна неизменная характеристика — пол. Всё остальное: рост, размер ноги (те самые физиологические параметры) быстро меняются, один раз запомнить размер и рекомендовать всю жизнь не получится. Система должна не только запоминать эти параметры, но и точно прогнозировать их изменение.
  2. У одного взрослого может быть несколько детей — следовательно, система должна распознавать это и вести уже не один, а два и больше виртуальных профилей.
  3. Есть определенные детские товарные категории «для самых маленьких» (например, подгузники), которые покупают с определенной периодичностью. Неплохо бы продавать их тоже регулярно, правда? Кстати, для тех же подгузников существует собственная размерная сетка: от 0 до 24 месяцев.
  4. Есть детские праздники, в канун которых продажи детских товаров возрастают. Система должна располагать инструментами для рекламы: вовремя напоминать взрослым, что самое время вернуться в магазин.

Все эти особенности должны учитываться в рекомендательных алгоритмах. Иначе мы получим эффект типичного слепого бармена.

Как работают «детские» рекомендации

На ребенка, так же, как и на взрослого, заводится виртуальный профиль. Основа для него — история покупок и просмотров детских товаров. Определяется пол и возраст. Возраст до 2-х лет автоматически обновляется каждый месяц, после 2-х — каждый год.

Возраст в виртуальном профиле каждый раз соотносится с просмотрами и покупками товаров для определенного возраста. Новый профиль создается в двух случаях:

  1. Если была совершена покупка или набрано достаточное количество просмотров для ребенка, пола которого нет среди вычисленных.
  2. Если была совершена покупка или набрано достаточно просмотров для размера и возраста меньше минимального вычисленного или больше максимального вычисленного.

Пример, как это влияет на рекомендации: товары неподходящего размера исключаются из блоков:

  • «Интересное» — если система знает размер определенного типа одежды, то на основании этого скрываются рекомендации неподходящих по размеру товаров.
  • «Похожее» и «популярное» — даже если система не знает размеров, то предварительные данные можно получить от просматриваемых сейчас товаров.

Информация о поле ребенка тоже существенно влияет на выдаваемые системой рекомендации.

Пример, как это влияет на рекомендации: товары противоположного пола исключаются из блоков:

  • «Популярные товары» на главной странице.
  • «Это интересно».
  • «Покупают сейчас».
  • «Также покупают/ также рекомендуем посмотреть» — исключаются, если просматриваемый товар совпадает с полом ребенка.

Это избавляет покупателя от «мусорных» рекомендаций и повышает их общий уровень качества. Точнее рекомендации — больше кликов, всё просто.

Бонус: детские триггеры

Триггеры — это определенные события, при наступлении которых пользователю автоматически отправляется письмо определенного содержания. Например, мы разделили триггеры и триггерные события на несколько категорий.

  1. Уточнение даты рождения. Когда мы собрали достаточно информации о ребенке, пользователю отправляется письмо с просьбой уточнить дату рождения и пол. Это дает 100% гарантии точных рекомендаций.
  2. Подарки на день рождения. За 2 дня до вычисленной (или введенной пользователем) даты рождения ему отправляется письмо с рекомендациями товаров. Товары, конечно, не случайные, а подходящие по полу, возрасту, размерам, предпочтениям и т.д.
  3. Подарки на Новый год. Высылаем 21 декабря, чтобы захватить католическое Рождество. Также рекомендации товаров с учетом виртуального профиля ребенка, как в предыдущем пункте.
  4. Тематические праздники. Система помнит про день защитника отечества, 8 марта, день знаний, выпускной, день учителя, день молодежи, хэллоуин и много других знаковых дат. На каждый праздник рекомендации отличаются, так, например, на женский день рассылки получат только родители девочек, а в рекомендациях будут только игрушки для девочек.

Кроме того, мы ввели в практику регулярные триггерные рассылки. Если пользователь делал покупки одних и тех же товаров несколько раз с определенной периодичностью — вычисляется средний промежуток времени между этими покупками. По истечении этого периода высылается триггер.

Заключение

По свежей статистике от Target, 69% молодых людей в возрасте от 25 до 34 лет охотно делятся данными с маркетологами, чтобы обеспечить лучшие персональные рекомендации — товаров и контента. Мир постепенно осознает необходимость, это радует.

Делайте больше продаж. И используйте для этого правильные инструменты. До скорого!

Подпишитесь на рассылку

Два письма в месяц: полезные статьи про маркетинг, исследования, инструкции, гайды, чек-листы и кейсы с лучшими практиками наших клиентов.